Transverse Hausdorff dimension of codim-1 C2-foliations
نویسنده
چکیده
The Hausdorff dimension of the holonomy pseudogroup of a codimensionone foliation F is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when F is non-minimal, and to be equal to zero when F is minimal with non-trivial leaf holonomy.
منابع مشابه
Nonuniformisable Foliations on Compact Complex Surfaces
We give a complete classification of holomorphic foliations on compact complex surfaces which are not uniformisable, i.e., for which universal coverings of the leaves do not glue together in a Hausdorff way. This leads to complex analogs of the Reeb component defined on certain Hopf surfaces and certain Kato surfaces. 2000 Math. Subj. Class. 32J15, 37F75, 57R30.
متن کاملThree-manifolds, Foliations and Circles, I Preliminary Version
A manifold M slithers around a manifold N when the universal cover of M fibers over N so that deck transformations are bundle automorphisms. Three-manifolds that slither around S are like a hybrid between three-manifolds that fiber over S and certain kinds of Seifert-fibered three-manifolds. There are examples of non-Haken hyperbolic manifolds that slither around S. It seems conceivable that ev...
متن کاملOn holomorphic foliations with projective transverse structure
We study codimension one holomorphic foliations on complex projective spaces and compact manifolds under the assumption that the foliation has a projective transverse structure in the complement of some invariant codimension one analytic subset. The basic motivation is the characterization of pull-backs of Riccati foliations on projective spaces. Our techniques apply to give a description of th...
متن کاملLinking Numbers of Measured Foliations
We generalise the average asymptotic linking number of a pair of divergence-free vector fields on homology threespheres [1, 2, 14] by considering the linking of a divergence-free vector field on a manifold of arbitrary dimension with a codimension two foliation endowed with an invariant transverse measure. We prove that the average asymptotic linking number is given by an integral of Hopf type....
متن کاملDe L ’ Institut Fourier
— We describe explicitly the moduli spaces M pst g (S, E) of polystable holomorphic structures E with det E ∼= K on a rank two vector bundle E with c1(E) = c1(K) and c2(E) = 0 for all minimal class VII surfaces S with b2(S) = 1 and with respect to all possible Gauduchon metrics g. These surfaces S are nonelliptic and non-Kähler complex surfaces and have recently been completely classified. When...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007